HW 4 (Additional).
1. Show the following "quasi-regularity"
[WopWlive for order-measure
$$m^*$$
: Let
 $m^*(A) < +\infty$. Then
(i) $m^*(A) = \inf\{m(G): open G \ge A\}$
(ii) $\exists a G_{\delta}$ -set $H := \bigcap G_n \supseteq A$ s.t. $m(H) = m^*(A)$
(where each G_n is open).
2. Let I be an open intrival with $0 < l(I) < \infty$ and
 $lot 3 \in [R]$ with $13 | < \frac{l(I)}{2}$. Show that
 $I \cap (I+3) \neq \phi$, and that $I \cup (I+3)$ is
an interval of lingth $< \frac{3}{2}l(I)$.
3. Let $[E_n: n\in N]$ be a sequence of measurable sets
and let $E = lim \min f E_n (:= \bigcup \bigcap E_n = \bigcup T_n)$
where $T_n := \bigcap E_{IC} \not = n$. Show that
 $m(E) \leq limmin m(E_n)$.
Hint : Firstify each of the steps in the following
 $m(E) = \lim m(T_n) = \liminf f m(T_n) \leq \lim m f m(E_n)$.

.

4. Let
$$0 \le m^{4}(A) \le +\infty$$
, and let $\alpha \in (0, 1)$. Show that
 $\exists e^{m} open interval I month out $m^{4}(A \cap I) > \alpha \cdot l(I)$.
Hint: By def of m^{*} , $\exists COIC \{I_{n \ge n \in A}\}$ of A such that
 $\downarrow m^{*}(A) > \sum_{n=1}^{\infty} l(I_{n})$. Justify the following sleps
 $\sum_{n=1}^{\infty} m^{*}(A \cap I_{n}) \ge m^{*}(A) \ge \sum_{n=1}^{\infty} \alpha \cdot l(I_{n})$
and so \exists at least one term on LHS > the corresponding term
 $n \in A_{1}$.
5. Let $0 \le m(E) \le +\infty$, $\alpha \in (\frac{3}{4}, 1)$ and α nonempty open
 $minvel methods have $m(E_{0}) \ge \alpha \cdot l(I)$, where $E_{0} = E \cap I_{A}$
Show that $(-\delta, \delta) \subseteq E_{0} - E_{0} \le E - E$ where $\delta_{0} = \frac{l(I)}{2}$;
 m_{1} we have the following Steinhauss Theorem:
 $0 \le m(E) \Longrightarrow E - E$ contains δ -neighborhood of 0
(the functioness $m^{*}(A) \le \infty, \notin m(E) \le +\infty$ can be dropped in (Θ, S) .
Hint: Suppose not: $\exists \Im$ with $|\Im| \le \frac{l(I)}{2}$ s.t. $\Im \notin E_{0} - E_{0}$.
Then Eo and $\Im + E_{0}$ must be disjoint and so, pl. justify
 $2^{m}(E_{0}) = m(E_{0}) + m(\Im + E_{0}) = m(E_{0} \cup (\Im + E_{0})) \le m(I \cup (\Im + I))$
 $\le \frac{3}{2} l(I)$,$$

by Q2. Thus $\exists l(I) < x \cdot l(I) < m(E_0) < \frac{3}{4} l(I)$, a contradiction. 6. Each bounded closed subset $F \subseteq |R|$ is compact in the sense that any open cover \mathcal{C} of F has a finite subcover (Heine-Bord Theorem, cf. 2050).

7. Let
$$K \subseteq G \subseteq [R$$
 with compact K and open
 G . Then \exists open set containing $O(4m give)$ on the that
 $K+V \subseteq G$.
Hit: $\forall K \in [K, \exists \delta_{K} > 0 \ s.t. K+ \bigvee_{2\delta_{K}}(0) \subseteq G$. By $\&b$
 $\exists \kappa_{1}, \kappa_{2}, \dots \kappa_{n} \in K$ s.t. $K \subseteq \bigcup_{i=1}^{m} (\kappa_{i}+\bigvee_{\delta_{K_{i}}}(0))$.
Let $\delta = \min\{\delta_{K_{1}}, \delta_{K_{2}}, \dots \delta_{K_{n}}\}$. Then $[K+\bigvee_{\delta}(0) \subseteq G$.
 $\delta^{*}(2nd \operatorname{prog} G)$ Steinhaus Th_{j} . $Gj \& 5$). Given $O(m[E), we can(?))$
use the online 4 inner regularity with switchly small
 $\varepsilon > u$ to find closed K and $Open G$ such that
 $K \subseteq E \subseteq G$ with $2 \cdot m(K) > m(G)$. By $\&b, 7$,
 K to compart and $[K+V \subseteq G$ for some open
set containing O . Show that $V \subseteq K-K (\subseteq E-E)$,
showing Steinhaus Th .
 $|hint: Lut v \in V$. Should $v+K$ be disjoint from K ,
 $one would$
 $2m(K) = m(v+K)+m(K) = m((v+K) \cup_{\delta} K) \leq m(G)$,
 $k non-ompty so \exists \kappa_{i}\kappa_{i} \in K$ such that $v+\kappa_{i} = \kappa_{i}$; hence
 $v \in K-K$.

9. Let $0 < m(E) < +\infty$, $\alpha \in (\frac{1}{2}, 1)$ and I on open interval such that $m(E_0) > \alpha \cdot l(I)$, where $E_0 := E \cap I$. Find $\delta > 0$ s.t. $V_f(0) \subseteq E_0 - E_0$.